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I present a generator for relativistic phase space that incorporates 
much of the effect of typical experimental cuts, and which is suitable for 
use in Monte Carlo calculations of cross sections for high-energy 
hadron-hadron or electron-positron scattering experiments. © 1992 
Academic Press, Inc. 

1. INTRODUCTION 

The calculation of cross sections for scattering processes 
is a basic tool in the analysis of data and backgrounds at 
both hadron-hadron and electron-positron colliders. The 
most widely used approach is that of Monte Carlo integra- 
tion: one generates a set of momenta with a Lorentz- 
invariant phase space distribution, rejects those sets that 
fail a set of cuts designed to mimic the experimental 
cuts (for example, a minimum transverse energy cut in 
hadron-hadron collisions), and evaluates the relevant 
matrix element on the remainder, thereby obtaining a 
numerical estimate of the desired cross section. 

The purpose of the present work is to present another 
algorithm for generating a Lorentz-invariant phase space 
distribution. It is useful to distinguish two steps in such a 
process: one typically generates a set of points in a hyper- 
cube, x e [0, 1] d(n), and then maps the hypercube to phase 
space (d(n) depends on both the number of final-state par- 
ticles and on the mapping). To calculate a cross section, one 
integrates over the hypercube a matrix element, multiplied 
by a weight factor (which in general depends on x). In the 
simplest approach, one simply generates a set of pseudo- 
random points distributed uniformly in the hypercube; but 
more sophisticated adaptive approaches, such as the Vegas 
algorithm [1], are also available. I assume the use of 
such an adaptive algorithm and use the term "phase space 
generator" to refer to the mapping from the hypercube to 
phase space, along with a formula for the weight factor. 
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Most of the traditional literature on the subject [2, 3] 
concerns itself with the general problem of generating phase 
space distributions for particles with arbitrary masses. In 
the context of present-day (and planned) colliders, however, 
most of the "final-state" particles (quarks and leptons) are 
massless or nearly so, compared to the typical momentum 
transfers in processes of interest. This was emphasized by 
Kleiss, Stirling, and Ellis [4], who presented a phase 
generator, Rambo, intended for this regime. 

The Rambo generator first generates an isotropic set of 
massless four-momenta not satisfying energy-momentum 
conservation. Afterwards, it applies a Lorentz transforma- 
tion to obtain a momentum-conserving, and then a confor- 
mal transformation to obtain an energy and momentum- 
conserving, set of massless four-momenta. (For phase space 
with massive particles, another scaling of the momenta and 
recalculation of the energies yields a valid configuration.) In 
this way, the 3n - 4 independent variables describing a final 
state with n massless particles are smeared smoothly over 3n 
variables (which are in turn mapped into a uniform dis- 
tribution over 4n variables). This generator is both elegant 
and simple to program, which makes it an extremely useful 
check on more complicated generators such as the one I 
present below. 

Unlike traditional generators, the Rambo generator has a 
weight factor which (for the purely massless case) is inde- 
pendent of the point in phase space; it contributes a factor 
dependent only on the total center-of-mass energy in the 
process. Thus in a certain formal sense it has "maximal 
efficiency": a uniform weight over the integration region will 
yield the minimum error (for a given amount of computa- 
tional work) in a Monte Carlo integration procedure. 
Indeed, if we were simply interested in calculating the 
volume of phase space, this generator would be unsur- 
passable in efficiency. Practical applications differ in two 
respects: we wish to integrate a scattering matrix element; 
and we wish to perform the integration over that part of 
phase space that survives certain angle and energy cuts. For 
such practical applications, the efficiency of the Rambo 
generator is not maximal, and one can improve upon it. 
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2. MONTE CARLO INTEGRATION and the fractional error estimate is given (for large NMC) by 

We are interested in calculating a cross section for the 
production of n final-state particles, 

as(n) = fpt~l~espac e dLIPSn(P; {p,, mi}) FS 

x [aC.+2(P; {p,, m~})J 2, (2.1) 

where dn + 2 is the scattering amplitude, F is the flux factor 
for the incoming particles, S the symmetry factors for the 
final state, P is the sum of the four-momenta of the incoming 
particles (with the convention that Ei . . . .  ing > 0), and where 
LIPS is the Lorentz-invariant phase space measure for n 
particles with four-momenta p~ and masses mr: 

dLIPS(P; {pi, mi} )= (2r~)4 64 ( P - i  ~fmalPi ) 

d4pi 2zcb(p2-m 2) O(p °) 
i • final 

= (22"~)4 ~4 ( P -  2 Pi) 
i •  final / 

d3pi (2.2) 
x 1-[ (2zt) 3 2Ei" 

i • final 

I have suppressed any additional integrations that may arise 
(such as the integration over patton distributions in the case 
of hadron-hadron collisions). We are particularly interested 
in the light (or massless) particle case, where Ee--~ Ipgl for 
momenta surviving the cuts. A phase space generator 
provides us with a mapping from the hypercube to Lorentz- 
invariant phase space, pc= Gi(x), and the Jacobian of the 
transformation, W(x). The cross section of interest is then 

where 

as(n) = f dxOcut({Gi(x)}) W(x)FS 
EO, 1 ]din) 

× I~¢~+ z(P; {Ge(x), mi})l 2 

=- J ~Eo. 11 ~"~ dx ~l ( x ), (2.3) 

if the set p; passes the cuts; 
otherwise. (2.4) 

If we choose N ~ c  points in our Monte Carlo sample, with 
probability density ~(x) ,  the estimate of the cross section is 
given by [ 1 ] 

1 ~, ~ / (x )  (2.5) o M c  = 

1 
O'MC 

~/(VMc- (aMC)Z)/(NMc -- 1), (2.6) 

where 

1 ( / ¢ ( x ) ~  2 (2.7) 
VMC -- NMC x ~ \ , ~ ( X ) / /  ' 

In the simplest implementation, the probability distribu- 
tion would be uniform ( ~ ( x ) =  1); more sophisticated 
approaches, such as the Vegas algorithm, attempt to choose 
the probability distribution so as to minimize the error. 

In performing the calculations, we wish to minimize the 
amount of work required to obtain a specified accuracy in 
our calculations; or equivalently, to maximize the accuracy 
obtained for a given amount of work. In numerical calcula- 
tions, this translates into the ideal of minimizing the amount 
of computer time required to obtain an answer to a specified 
degree of accuracy. In Monte Carlo calculations, the com- 
puter time is proportional to the number of points taken; 
and the error (in the limit of a large number of points) 
decreases in proportion to the square root of the number of 
points. The most hard-nosed measure of efficiency is thus a 
quantity like 1/(computer time x (relative error)2), which I 
shall term the practical efficiency. In the limit of a large 
number of Monte Carlo points, the practical efficiency 
approaches a constant for any given calculation. 

However, this constant depends on the details of the 
hardware and software system. It is therefore perhaps 
preferrable to think about the ordinary efficiency, which I 
define 

1 
e=NMce 2, (2.8) 

where NMc is the number of Monte Carlo points used, and 
e is the fractional error in the answer (as estimated, for 
example by Vegas). In addition, it will be helpful to define 
a hit rate h, the fraction of points thrown down by Vegas 
that survive the quasi-experimental cuts. 

A hit rate close to unity is desirable; in that case, the 
phase space generator spends most of its time generating 
useful points, rather than points to be discarded. One might 
assume that the amount of time spent generating phase 
space configurations is in any event negligible compared to 
the amount of time spent evaluating the matrix element for 
a scattering process. This assumption is incorrect for two 
reasons: first, for some background processes, such as 
multijet production, there are numerically reasonable 
approximations I-5], which are also reasonably efficient 
computationally; second, the volume of phase space which 
survives the cuts typically decreases factorially with an 
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increasing number of final-state particles, 1 whereas the 
approximations to scattering matrix elements can often be 
cast in forms where the amount of computational work 
increases only polynomially [-6]. In such a case, if the hit 
rate is proportional to the fractional volume of phase space 
that survives the cuts, then the computation time for a large 
number of final-state particles is dominated by the phase 
space generator, even if it is much faster to generate a single 
configuration than to evaluate a scattering matrix element. 

Vegas will attempt to increase the hit rate by performing 
changes of variables numerically, and thereby adjusting the 
distribution N(x), but it will be able to do so only in cases 
where the cuts are approximately parallel to the axes of 
the hypercube. Rambo, however, effectively smears the 
Lorentz-invariant phase space over the hypercube in such a 
way that the cuts depend non-trivially on all the variables. 
Vegas is then unable to improve the hit rate much by re- 
mapping the coordinates of its hypercube; indeed, when 
driving Rambo from Vegas, one typically sees a hit rate 
comparable to the fractional volume of phase space that 
survives the cuts. 

The above considerations are in some ways a special case 2 
of the general observation [1] that in an importance- 
sampled Monte Carlo integration, one obtains an optimal 
choice for the distribution of points by taking 

fJl(x)f (2.9) 
~(x)  = f dx I~(x)l" 

Vegas attempts to make this choice by changing variables 
numerically. If we can find a phase space mapping that 
allows Vegas to choose the probability distribution more 
effectively, we will improve our efficiency. 

Even if we can do this, however, adaptive algorithms 
often have trouble handling singular or sharply-peaked 
behavior in the integrand. If possible, it is preferrable to 
absorb singularities (or even cut-off singularities) into the 
probability distribution analytically. In the case of interest, 
scattering amplitudes for massless particles typically exhibit 
two sorts of singularities. The matrix element will diverge as 
the any outgoing particle becomes soft; and as any two out- 
going particles become collinear. As we shall see, one can 
absorb the former singularity into the probability distribu- 
tion, thereby smoothing out the integrand and improving 
the efficiency of our integration. 

A generator which increases the hit rate over that 

This is typical of the dimension depndence of the ratio of volumes of a 
regular solid embedded in another of different shape. 

2 The considerations are not  precisely the same, because the computer 
time for evaluating configurations which do or do not  survive the cuts is 
different. 

obtainable with Rambo, and absorbs some of the 
singularities of the matrix element, is given in the next few 
sections. I call it Octopus. 

3. MASSLESS PHASE SPACE WITH CUTS 

Let us begin by focussing attention on the case of a phase 
space generator for massless particles; we shall consider the 
more general case of light particles in Section 4. What are 
the sorts of simulated experimental cuts one may wish to 
apply? In electron-positron colliders, the lab frame and 
center-of-mass frame are the same, and so the appropriate 
cuts are minimum energy cuts Emin (to eliminate soft junk), 
minimum angle cuts 0min between outgoing particles, and a 
minimum angle cut 0bo,~ with respect to the beam direction 
(to exclude debris travelling down the beam pipe). In 
hadron-hadron colliders, collisions involve partons of 
varying energies, and so the center-of-mass frames of 
different collisions are smeared along the beam direction; in 
this case, a transverse energy cut ETmin is appropriate. (The 
transverse energy is defined as the projection of the energy 
onto the plane transverse to the beam; for a massless 
particle, it is the same as the transverse momentum.) 
In addition, experimenters impose cuts on the pseudo- 
rapidities of jets and on the cone angle AR between jets. We 
shall mimic these in the conventional manner with limits on 
the maximum pseudo-rapidities, t / = - l n ( t a n  0/2) (which 
for massless particles is the same as the rapidity 
y = ln[(E + p l l ) / (E-  pH)]/2), of the outgoing partons, and 
with limits on the minimum AR, 

= + (3.1) 

between outgoing partons (I assume below that 
AR~in<~n/2). Of course, these sorts of cuts are also 
necessary in a theoretical calculation in order to cut off the 
infrared divergences of scattering amplitudes. 

To simplify the presentation, I consider only cuts that 
treat all particles symmetrically; this is in fact true of the 
cuts imposed in one physically important situation, the 
calculation ofmultijet cross sections. It is, however, possible 
to generalize the equations presented below to different cuts 
for different outgoing particles, so long as the cuts are of the 
same general types given above. When using the Rambo 
algorithm, the cuts are applied afterward to each momen- 
tum set generated. The event is rejected if the set fails the 
cuts. I assumed a similar check is applied to the output of 
the generator described below, so that we may (if desired) 
apply a weaker set of constraints within the generator. That 
will not cause us to generate sets of momenta that fail the 
desired cuts, but will only reduce the efficiency. Thus we 
need not solve the constraints implied by the cuts exactly, 
but only approximately. 
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One can write an iterative formula for the phase space 
measure [2], 

dLIPS~(P~nt; {Pi}7=m) 

d3pl d L I P S ,  l ( P t o t -  P l '  {Pi}  n 2) (3.2) 
(2X)3 2E 1 , i= 

which I shall use as the basis for the algorithm. 
For massless particles, Eq. (3.2) becomes 

dLIPS,,(Ptot ; {Pi}7= i) 

1 
--2(2rr) 3 E1 dE1 dO1 dcos O~ 

x d L I P S . _  l ( P t o t -  Pl ; {pi}n= 2), (3.3) 

where it will be convenient to take 0; and ~bi as the polar and 
azimuthal angle, respectively, of the ith particle with respect 
to the beam axis. I utilize a hypercube of dimension 
d(n) = 3 n -  4 (in contrast to the Rambo's d(n)= 4n), with 
the following correspondences for the first n - 2 momenta, 

X3i-- 2 ~ Ei  

X3i-- 1 ~ Oi (3.4) 

X3i ~ ~i 

with each x e (0, 1 ). 
What are the integration limits on these variables? Let us 

assume that we have generated momenta for particles 
1 ..... ( i - 1 )  and define the remaining four-momentum, 
P = P t n t  - -  ~ ] } -  11 Pi" We must ensure that, after generating a 
momentum for the first remaining particle, we will be able 
to satisfy the energy-momentum conservation constraint for 
the other remaining particles. Now, the sum of any number 
of four-momenta with positive energies is a positive-mass 
four-momentum, so we must require that 

(P - p i )  2 ~ O. (3.5) 

This constraint is also clearly sufficient to satisfy energy- 
momentum conservation, since one can always write a 
positive mass squared four-momentum in terms Of two 
massless four-momenta (setting the rest to 0). Thus 

2Ei( P ° -  IPI cos 0ip) ~ (p0)2 _ IPI 2, (3.6) 

we have the constraints 

l + v  
e i ~ - -  

2 

cos 0ie ~> 2ei + v 2 - 1 
2eiv Lip.  

(3.8) 

(The kinematic limit on e i ensures that Lie <~ 1.) As detailed 
in Appendix I, the latter constraint implies the following 
constraints on cos Oi and ~bi, 

cos 0i e [ c - ,  c + ] 

~ is  [ ¢ - , ¢ + ] ,  
(3.9) 

where 
c - = - I  } 

c + = l  

~+ =~p+~ 

= { - 1 ,  
c L ~ ,  

c+ ={1 ,  
L + iP, 

(~ - = ( ~ p  - L ,  

q~+ =¢p+L, 

Lip ~ - i 

Lip<~ - c o s  0p '~ 

otherwise 

Lie  ~ COS Op 

otherwise 
~, Lip> - 1  (3.10) 

and where 0p is the polar angle of P, and 

L ~  = Lip cos 0p + x/(1 -- L2e)(1 -- cos 2 0p) 

( L.,-cosoicosoi, ) 
L,  = acos \~/(1 - c o s  2 0i)(1 - c o s  2 0p)/" 

(3.11) 

For the electron-positron case we also have the constraints 
ei >~ emin and Icos 0il ~< cos 0beam. We must in addition leave 
sufficient energy for the minimums of the remaining 
particles, and thus 

ei ~< min ( ~ - ~ ,  1--(n--i) emin). (3.12) 

In the hadron-hadron case, we can translate the 
constraint Ir/ih ~< r/max into a constraint 

where 0ie is the angle between p; and P, so that defining the 
dimensionless quantities 

e i = Ei/P ° 

v = IPI/P ° 
(3.7) 

eTmin = ET min/ P 0 

emin = Emin/pO, 

ICOS Oil ~COS 0beam (3.13) 

by defining cos 0beam = tanh r/max- Every particle must have 
an energy greater than or equal to the minimum transverse 
energy, so we have the upper bound 

ei .min(    ni,eTmin) emax (314, 
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The transverse energy constraint e~ sin 0~> eTmin itself this constraint, as shown in Appendix III; translates into the 
imposes the additional constraint on cos 0~, requirement that 

[COS Oil <~ N i l  - -  ( e T m i n / e i )  2 (3.15) ei~ L + I,L, Z > 0 

ei ~< @2, ;~ < 0, 

so long as 

2 /)2 2 
eTmin --}- COS 2 0p  ~ ema x 

(3.16) L~L ~< max(~o/2, e T m i n  , LET ) 

(given that ei >/eTrnin, of course). To ensure that this has a 
non-trivial overlap with the interval [ c - ,  c + ] given in 
Eq. (3.10), we must demand that 

x/1 - ( e T m i n / e i )  2 > ¢ -  

- - N i l  - -  ( eTmJn /e , )  2 < C +. 
or Z<0 .  

(3.21) 

(3.22) 

Although it is in principle possible to impose these con- 
straints exactly, the non-trivial cases turn out to involve 
the solutions to a quartic equation. As discussed in 
Appendix II, it is therefore preferrable to impose a slightly 
weaker set of constraints, 

e i ~ eTmin 
1 - v  2 

e i ~ L E r  , if eTmin > (3.17) 
2(1 -- V sin 0v) 

and 4~eZmin + fl2(1 - - / )2)  COS 2 01 " ~ 0, 

where 

= sin 2 0 v - (1 - v 2) cos 2 0p, 

/~ = x / l  - v 2 cos 0v - v sin 0p (3.18) 

1 v(flsinOe+x/4~eZmin+~2(1 vZ) cosZ0v) 
LET = ~ + 2~ 

These prerequisites on eTrni n are again nearly always true in 
practice. (One would omit the constraints of Eq. (3.21) if 
they were not.) 

Given ee, we also obtain an addition constraint on cos 0i, 

I __ __ eTmin ' cosOi~ VcosOv__X/(1 ei)2_(n i)2 2 

ei  

vcosOr'+ x/(1--ei)2--(n--i)2 . (3.23) 

Equations (3.14), (3.17), and (3.21) together give upper 
and lower limits el and eu on the energy fraction of the par- 
ticle. To generate an energy from the corresponding x, we 
could set 

Ei = P°(x3 i_  2(eu - el) + el) (3.24) 

(The prerequisites on eTmin are nearly always true in 
practice for those situations where the second constraint is 
more severe than the first.) 

We also want to ensure that the choice of energy for Pi 
still allows us to satisfy the transverse energy constraint for 
the following n -  i momenta. That constraint, combined 
with the requirement of energy-momentum conservation, 
implies that there is a maximum longitudinal momentum 
that the following momenta can have; and thus, we must 
not allow the present Pi to increase the existing longitudinal 
momentum too much. That is, we must demand 

With 

max ~' IPjLI ~ IPL-- PiLl. (3.19) 
j = i + l  

m=l_vZcos2Op_(n  i)2 2 2 - -  eTmin + eTmin 

Z = 1 - -  e~min( l  - -  v2 c O s 2 0 p )  
(D 2 

Lt_+L OJ 
- 2(1 -- v 2 cos 2 01, ) (1 __+ v ]cos 01, I X/Z), 

(3.20) 

with an associated jacobian e u -  el. However, as noted in 
the previous section, massless-particle amplitudes have soft 
singularities of the form ~ ' ( x ) ~  1/E 2, while the measure in 
Eq. (3.3) only has one power of the energy. In order to 
absorb the remaining singularity (and thereby introduce 
another power of the energy into the measure), we instead 
should set 

Ei = P°ej exp[ln(eu/e0 x3i_ 2]; (3.25) 

the associated jacobian is then 

J~ = E, ln(eu/el). (3.26) 

For  some purposes (for example, computing the correlation 
between different amplitudes), one may desire an even 
larger explicit power of E in the measure. To obtain a net 
power of E q + 2, we should set 

E i : p ° e  1 eu q q__ (e u _ (e u eq ) X3i_2)1 /q .  (3.27) 
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The associated jacobian in that case would be 

S ~ = E q + l  e q - e ~  (3.28) 
qeq eq(p°)q" 

Given the value of e;, Eqs. (3.10), (3.13), (3.15), and 
(3.23) together give upper and lower bounds Cu and c~ on 
cos 0i. We can then set 

COS 0 i = (C u - -  CI) X 3 i _  1 "q- CI" (3.29) 

The associated jacobian is 

j0  = (Cu - c,)/2. (3.30) 

Before turning to the question of satisfying the interpar- 
ton angle constraints themselves, we may note that the very 
existence of such constraints forces the minimum invariant 
mass of a pair of final-state particles to be greater than some 
minimum, 

_ 2 (pi+ Pj)2>/2E2min(l --cos ARmin)=mpair. (3.31) 

(This formula holds for the case of hadron-hadron 
scattering; there is, of course, a similar one for the electron- 
positron case.) This allows us to replace Eq. (3.5) with a 
stronger constraint, 

(P -- pi) 2 >i Npairsm2air 

(n - i )(n - i--  1 ) 
2 (3.32) m pair" 

With 2 2 0 2 #pairs=Npairsmpair/(P ) ,  the maximum energy 
fraction is then reduced a bit, 

l + v  2 
e i ~ - - - -  ]A pairs (3.33) 

2 2(1 - v ) '  

and the relative cosine limit becomes a bit tighter for the 
given energy fraction, 

2 i 
COS Oip ~ 2ei + v 2 -- 1 + ]Apair s ~ Lie. (3.34) 

2eiv 

Equation (3.10) continues to hold, with Lie~L' ip.  
However, since this modification makes the cosine con- 
straint stronger, we can continue to use the (weaker) 
constraints following from Eq.(3.16); they will not 
(improperly) eliminate any configurations which would 
survive the cuts. 

Let us now examine the question of satisfying the cone 
angle constraints, AR o. >1 ARmi n. (Although I shall not dis- 

cuss it in detail, the method of satisfying the angular separa- 
tion constraints in an electron-positron environment is 
similar in many ways.) It is convenient to do this by 
ignoring any potential constraints on 0/and imposing con- 
straints only on ~bi. This will result in a less-than-maximal 
hit rate, but in a hadron-hadron environment this choice is 
acceptable, since with the usual definition of AR the cones 
are wider in the azimuthal angle than in the polar one. We 
wish to exclude all angles ~bi for which ARij < ARmi n for any 
j < i. The remaining angles, in general, form a disjoint set of 
intervals. How should we attack this problem? 

The method I describe is, of course, not the only possible 
one, but it is convenient. The idea is to subdivide the circle 
[-0, 2n] into some number of wedges and to iterate a 
marking process over al l j  < i. For any given j, one marks as 
excluded all wedges which lie entirely within ARmi n of the 
j th  particle. One then generates an angle uniformly within 
the unmarked wedges; the associated weight factor is simply 
the number of unmarked wedges divided by the total num- 
ber of wedges. 

In practice, we might as well subdivide the interval 
[-~b-, ~b + ] rather than the whole circle into, say, B bins, 
numbered 0 ..... B - 1. (It is most convenient to choose B to 
be a multiple of the number of bits in a computer word and 
to let each flag for a wedge be represented by a single bit. 
For practical purposes, B- -96  and B =  128 are good 
choices.) Shifting all angles by ~bp simplifies matters some- 
what; define 

_ 2 ri, s - A R m i n  - -  ( ~ i - / , ] j ) 2  

~o + = (~b, - ~bp _+ ~ )  mod 2n 

bl = [(~of + L+)B] 
2L¢ [ 

bu = ~(~0fl + L )B_ l J, 
2L¢ 

(3.35) 

where "mod 2n" means shifting into the interval ( - n ,  n] by 
adding or subtracting an appropriate multiple of 2n. (The 
increment of - 1  in the bu is intended to ensure that the 
entire bin falls within the excluded region.) Note that the 
assumed limit o n  z J R m i  n implies that ri, j <~ n2/4. 

All bins are initiall marked as allowed. We must iterate 
the following steps for each j  < i for which ri, j > 0: 

if ¢pf ~ q~+, mark bins hi""  bu as excluded 

if (o s- > ¢p+, mark bins bl - - -B -- 1 (3.36) 

and bins 0--- b u as excluded. 

(It should be understood that "marking" a bin with a num- 
ber less than zero or greater than B -  1 has no effect, and 
that the sequence a~ . . .a2 is empty if a 1 > a 2. The inequality 
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on the O f ,  rather than the more obvious one on the bL,~, 
ensures that we do not exclude a bin if the entire excluded 
region falls within the bin.) This will leave us with a set of 
B~ allowed bins, which we label bi ..... bB~. (If none of the 
bins are allowed, reject the configuration.) The angle ~b~ is 
then given by 

ticles, we take 0,_ 1 and 0, to be the polar angles with 
respect to the ~t axis, and ~b,_t, ~b, to be the azimuthal 
angles in the ~2-~3 plane (with ~b = 0 in the ~2 direction). It 
will be convenient to define a unit vector in the direction (or 
opposite to the direction) of the projection of 63 into the 
original x - y  plane, 

k ~ = [_Bax 3iJ 

b ,  = bk, 

(~b = B a X 3 i  - -  k~ 

~ = Op  - LO + 2 L ~  - -  
bo + 3~ 

B 

(3.37) 

The jacobian associated with the generation of ql~ is 

j ~  = L___~ B___~. (3.38) 
rc B 

The astute reader will note that this part of the algorithm 
has a running time which scales quadratically with the num- 
ber of outgoing particles, rather than linearly as do the 
remaining pieces. This may seem bad in contrast to Rambo, 
whose running time scales linearly with the number of par- 
ticles, but in fact this difference is somewhat of an illusion, 
because the running time to check whether an event passes 
the cuts also scales quadratically with the number of par- 
ticles. 

Thus far the discussion has concerned the first n - 2 final- 
state four-momenta. For the last two, we must do things a bit 
differently, because we have only two independent variables 
in total, rather than three per particle. The phase space 
measure for these two particles is 

d E n _ l  
d o_l-en_, 

_ 2 d cos 0n_ 1 
4v 

(3.39) 

I shall choose as the independent variables the cosine of the 
polar angle of the ( n -  1)th particle, and the azimuthal 
angle of this particle, both with respect to the sum of the 
( n - 1 ) t h  and nth momenta. This azimuthal angle is then 
unaffected by energy-momentum conservation constraints 
and is constrained only by the additional sorts of con- 
straints considered above. 

Thus I define a new coordinate system, with 

~1 = P  

ixP ~2-I~xPl- - s i n  ~b~'i + c°s ~be Y (3.40) 

~3 = ~1 x ~2 = (i - cos 0pP)/sin 0p. 

(At this point, P = e t o t -  5Z7-12 Pe .) For  the two last par- 

e4 = s in  0 p e  1 - c o s  0p  e3.  (3.41) 

The minimum energy constraints immediately imply the 
range for en 1, 

[ ( iv) 
e n _ l @  e / - -max  eTmin , -~ , 

( 1. )1 e' u - min 1 - -  eTmin , 2 ' (3.42) 

for hadron-hadron scattering, with analogous limits in the 
electron-positron case. 

We can solve for the cosines of the angles in terms of the 
energy fractions of the particles: 

COS 0n_ 1 = 
en2_l -- e 2 + v 2 

cos 0 n = 

2en-  1V 

v 2 + 2 e n _ l - -  1 

2en 1 1) 

e ] - e ] _ l  + v2 

2e n v 

v 2 -- 2e~_ 1 + 1 

2(1 - e n _ l ) V  

(3.43) 

and thereby arrive at limits for cos 0, 1, 

v 2 + 2e; -- 1) 
c{ = max -- 1, 2e{v 

v 2 + 2 e ~ - 1 . )  
c~,=min 1, 2e" v " 

(3.44) 

To generate cos 0n_ 1, we set 

COS O n _ 1 = (Ctu - -  C l )  X 3 n _  5 + C; (3.45) 

with the corresponding jacobian, 

j 0 _  2e~_1 
1 : (C; - -  C{) 1 - - / ) 2 '  (3.46) 

where we have put the factors from the measure into the 
jacobian for convenience. (See the comments on numerical 
stability at the end of the following section for an alternate 
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vers ion  of  this equat ion  in certain corners  of  phase  space.) 
The  two energy fractions and the other  cosine are then 

1 __1)2 

en_ 1 - -  2(1 - v cos 0n_ l) 

1 - 2v cos 0n_ 1 + v2 
= 1  --en_ 1 

en= 2(I__vcosOn_I ) 

2 v - ( 1  + v2) cos On--1 
COS 0 n = 

1 - 2v cos 0n_ 1 '[-/)2 " 

(3.47) 

The  transverse energy fractions of the particles are 

e2n--l= ( P n - - l " e 2 )  2 "+ ( P n - - l ' e 4 )  2 

= e .  2-1 [ sin2 0n_ 1 cos2 ¢ . -  1 

+ (cos On_ ~ sin 0p 

- sin 0n_ 1 sin ~b._ 1 cos Oe) 2 ] 

= e2-1 [ sin2 0 ._  1 + ( c°s2 0n _ 1 

--sin20._1 sinZ~bn 1 ) s i n 2 0 p  

- 2 cos On_ 1 sin 0 n_ 1 sin Op cos 0 l, sin ¢ . _  1 ]. 

(3.48) 

o r  

where 

The  transverse energy constraint  then is 

sin 2 0n 1 sin2 0p sin z Cn- 1 

+ 2 COS 0n_ 1 sin 0n_ 1 sin 0p COS 0p sin ~b._ 

- sin 2 0n-- ~ - c o s 2  On - 1 sin2 0e 

2 2 

+ 
k e n - l /  

sin ~b._ 1 e [s~-_ 1' S~1 ] '  

(3.49) 

(3.50) 

2 2 
S +  - -  - - C O S  0 p  COS Oi+__ X/I --exmi./e i (3.51) 

sin 0e sin 0; 

Now,  sin ~bn = - sin ~bn- 1, so we obtain  another  restriction, 

sin ¢n-1  e [ - s ,  + , - s [ ] .  (3.52) 

Combin ing  the two and defining 

sl = max(  - 1, - s .  + , s,;-_ 1) 
(3.53) 

s .  = min(1, s ,  + 1, - s ~ -  ), 

we obta in  

sin C n - 1  • [ m a x ( - -  1, - - s ~  + , S n _ l )  , m i n ( 1 ,  s ~ + 1 ,  - - S ~ - ) ] .  

(3.54) 

It  will be helpful to define 

A 1 = asin S 1 
(3.55) 

Au = asin su. 

For  the AR constraints  involving the final two particles, one 
could in principle proceed along the same lines as above;  
but  in this case, the rapidi ty and azimuthal  angle (in the lab 
f rame)  of the particles are non-po lynomia l  functions of 
sin ~bn_ 1, and thus implement ing that  constraint  would 
require solving m a n y  equat ions numerically,  which is likely 
to be ra ther  expensive. Instead,  it is easier to implement  the 
somewhat  weaker  constraint  excluding not  the full circle, 
but  only the circumscribed square 13rll<~ARmin/xf2, 
IA~I ~< ARmin/xf2. The remaining cuts will then be applied 

L after phase space generation,  as usual. Denote  by 0 n_ 1 and  
L ~bn_ 1 the polar  and azimuthal  angles of the ( n - 1 ) t h  

particle in the lab coordinate  system (~, ~', i) .  Then 

cos 0,  c_ 1 = cos On_ 1 cos 0 e 

+ sin 0n 1 sin 0p sin ~bn_ 1 

L L sin Op sin Cp sin 0n_ 1 sin C n-  ~ = cos 0n_ 1 

+ sin 0 ,_  1 cos ¢ , -  1 cos Cp 

- sin 0n 1 sin ~bn_ 1 cos 0p sin Cp 

L cos~b~ l = c ° s 0 n - l s i n 0  vcosCP sin 0 n_ 1 

- sin 0, i cos ¢ , -  1 sin Cp 

- sin 0n_ 1 sin Cn- 1 COS 0 v COS CV. 

(3.56) 

Equat ion  (3.54) specifies two regions in ¢n -1 ,  where 
sin ¢ . _  1 satisfies the given constraint  and where cos Cn- 1 is 
either positive (R + ) or  negative (R_) .  Divide these regions 
into bins. For  each i < n - 1, we may  form an allowed set in 
Cn- 1, consisting of those bins which satisfy one of the equa- 
tions 

L a tanh  cos 0 . _  a > qi 

L _ A R m i n / V / 2  a tanh  cos 0 n _ 1 < t/e 

L ¢n-1 -- ¢, > A R m , . / , / 5  

- < - 

(3.57) 
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as well as one of the corresponding equations with 
n - 1 ~ n. As shown in Appendix IV, these equations trans- 
late into the equations 

0 [AJ'll,i'AJ'ULi]' COS ~>~0 

~ n _ l  ~ ~ 1  j,u j,l ¢ < 0  
[Tz-An_l,i, zc--A,_Li], cos 

~. 1 

(3.58) 

while the corresponding set for n - 1 ~ n gives a similar pair 
with ~J'{~'~} ~ A s, 0,u} The definitions of the A J{! '~} (which ~ n - - l , i  n - - l , i  " a,t 
here are all shifted to lie in the interval [ - ~ / 2 ,  3zc/2]), 
along with those of the booleans .XJa, i and 5a~,~ used below, 
are given in Appendix IV. The intersection of the allowed 
sets for all i then gives the allowed region, within which we 
generate ~b,_ 1 uniformly. The associated jacobian is again 
the number of allowed bins divided by the total number of 
bins. Thus, if we split each of the two regions for ~b, ~ into 
/~ intervals and define 

b j , { l , u } +  _ _ ]  (A~'/1'~!.},, - Al)/} I 
{. t,.},i- L Au- A1 ] 

b j  ' {,,~}_ _ | ( ~  - A i ' / : " , ! . } , , . -  A , ) / }  
{ n - - l , n } , i - -  h Au - A ,  ]" 

(3.59) 

kj=  L(B + + BZ) x3._4] 

(~f = ( B a  + "~ B a  ) X3n  -- 4 - -  k f  

bf=b~ } 
On_l=Al+(Au_A1)b f ;~ f  , 

b s = 

B 

ky<B + (3.61) 

The jacobian associated with this angle is 

A u -  A, B + + B£ 
J~-  1 - (3.62) 

rc 2/~ 

To obtain the overall weight factor, we must combine the 
jacobians of Eq. (3.26), (3.30), (3.38), (3.46), and (3.62) with 
the factors in the measure, Eq. (3.3), and the phase space 
weight for the final two particles; this yields a weight W, 

n 2 

W-ZC(2n)2-2"2 Jn-° 1J~n-1 U EiJEJ°iJf • (3.63) 
i = 1  

(Note the interchange of u +--, 1 in going from the As 
to the b-s.) We start with all bins marked "allowed" 
(A+ = {all bins}) and iterate the following steps for all 
i < n - 1  for which all the inequalities are non-trivial 
( A f = I  ~ / ' j  --1,i = " t r ue " ) :  

S+ := ~ ;  

For j =  1-.-5, where the j t h  inequality has a solution 
j , ,  ~ 

( S e  1.i= true ), 

/q j ,  1 + . . . if A;, 1 , i "  j I < A~'_~ 1,i, then mark bins ~n_ 1, 

bJ, U_+ in S+ as "allowed"; otherwise, mark bins n--  l , i  

0-- b ju-+ andbinshJ,  l-+ n --  1, i  V n  -- 1, i  " " " 

/ ~ -  1 in S_+ as "allowed"; (3.60) 

A_+ :=A_+ ~S_+; 

followed by a similar set of steps with the bn, i. We will be 
left with B f  allowed bins in the R+_, which we label 
b~ ..... b~y. The angle ~bn_ 1 is then given in a fashion similar 
to Eq. (3.37): 

4. LIGHT PARTICLE PHASE SPACE 

In this section, I generalize the constraints developed in 
the previous section to handle light but not massless par- 
ticles. By "light" particle I mean a particle whose mass is 
smaller than the corresponding minimum energy or mini- 
mum transverse energy constraint. (Although some of the 
considerations in this section in principle apply to heavier 
particles as well, in practice it is not appropriate to apply 
cuts to these particles, since one is often interested in them 
only in intermediate states, with cuts applying only to their 
decay products. For these particles, a traditional-style phase 
generator is more appropriate; one may then used the 
formulae developed in this paper for the light particles.) 

So consider the question of generating a phase space dis- 
tribution for n particles with masses {m,. < (ETmin or Emin) }. 
With 

M°= ~ m s (4.1) 
j = i + l  

the counterpart of Eq. (3.5) is now 

( P -  pi) 2 ~ (M°) 2. (4.2) 

One could also construct the precise analog of Eq. (3.32), 
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but in practice it is more efficient to use a slightly weaker 
constraint, with 

M~ - mj + 
j = i + l  j = i + l  

mj >~ mpair/~'2 mj < mpair/~'2 

n<(n< - 1) 
+ 2 m2air' (4.3) 

where n < is the number of particles after the current particle 
with masses less than mpair/N//2. 

Define the dimensionless quantities 

As shown in Appendix III, this leaves the additional bounds 
(3.21) in place. 

The mass will, of course, cut off the soft divergences of the 
matrix elements, but if the mass is much smaller than the 
minimum energy cutoff, then the matrix element will be 
sharply peaked near the minimum energy, and it is still help- 
ful to generate an extra factor of either the energy or the 
norm of the momentum to smooth out the integrand. The 
measure has the form 

const × Ipil 2 dpi ~/iP,12+m~ : c o n s t ×  IPel dEi; (4.8) 

2i- 

yi = 

x/  E P 2 -- ( Mi  + mi) 2] [ p2 _ ( M , - -  mi) 2] 
p 2  

P2--M2i + m  ~ 
p2 

m i  
# i -  pO 

Ip, I ki- pO 

ei pO 

(4.4) 

Eq. (4.2) then leads to a maximum value for the energy 

ei~'~i-l-2il) 
2 (4.5) 

(the corresponding limit on the norm of the momentum is 
(2i + ?iv)/2) and then a constraint on cos O~e, 

(v 2 - 1 ) Yi + 2ei 
COS O ie ~ ~ Lim e .  (4.6) 

2kiv 

The form of the constraints on 0i and ~b; is then very similar 
to the one in the previous section; indeed, we need modify 
Eqs. (3.10) only by replacing Lip with L;me. So long as 7i~< 1 
(which is usually true in practical applications), then 
Lime>lLip, and we can again retain the constraint of 
Eq. (3.17), as it will be weaker than (but still a reasonable 
approximation to) the corresponding constraint that would 
emerge from Lime. (In the event that Lip < Lip , one would 
retain only the constraint ei/> eTmi,.) 

We may replace the longitudinal momentum constraint 
of Eq. (3.19) with a slightly weaker constraint on the 
longitudinal energy, 

max ~ I E j L I ~ I P L + P i L I .  (4.7) 
j = i + l  

I leave a factor of Ipil Ei explicit and generate the remainder 
through the mapping. For this purpose, one may again use 
Eq. (3.25); the jacobian (3.26) also carries over without 
change. 

The various additional restrictions on cos 0i from 
Eqs. (3.13), (3.15), and (3.23)carry over without change, as 
do the generation of the polar angle, Eqs. (3.29)-(3.30), and 
the method of satisfying the AR constraint for the azimuthal 
angles, Eqs. (3.35)-(3.38). 

For the final two particles, the measure in the light 
particle case is now (see Ref. [2]) 

where 

(k + 1) 2 0 ( k ? )  
l d c o s On  ld~b n_ +~ - - - -  . . . .  : 
4 - 1 k ,  +- 1 - re+- 1 cos On_ 1' 

(4.9) 

P = 1 - v2 + / z2-1 --~n =2 (1 __ V2) Tn 1 

k + _ l = v p c o s O , ,  1+-~/p2--41 t2 l(1--vZcosZOn 1) 
2 ( 1 - v  2 cos 20, 1) 

(4.10) 

Both solutions will constribute only in the case k~- 1> 0; 
this can arise only if p < 2#,_ 1. 

With Mn_ 1 = mn, we have the kinematic limits on en 1, 

er~' = max ( eTmin, Tn-12)~n--1V- ) 

" ' = m i n  (1 7n 1 2'~n-- 1/-) ) e u - -  e T m i n ,  - -  

(4.11) 

which lead to corresponding limits on cos 0n_l. (One 
should check explicitly that e~" <e~m', and the event should 
be rejected if this is not the case.) In addition, if p < 2#~_ 1, 
there is an additional constraint on the cosine, since the par- 
ticle can no longer travel in the direction opposite to P. We 
should distinguish three cases, where the constraints are 
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kd -  1 alone, 

kn -  1 alone, 

both k +_ 1 and k n - 1, 

satisfied by (a) k +  1 alone, (b) k;-_ 1 alone, and (c) both 
k ,  +- 1 and k~-_ 1' These three cases arise as follows, c~ = 

P ~ # n - 1  or e~" m m e 0 m a x  Cu 

,., m (4.12) 0n_ 1 e u  < e 0 m a x  COS -~- 

otherwise, k . _  i = 

where jmO_ 1 = 

Define 

2p~_ 1 m 
eOmax = 

P 

k{1,u} = x/(e{1,u} 2 2 , m, ) - - # . - - 1 "  

(4.13) 

(4.14) 

2em,_p, )  '~ 
min 1, 2vk---~u 

max ( - 1, 2e~" - p.'~ 
2vk( / 

(c7  - c?) X~n_~ + C7 

(C u - -  Cl ) 2 m m k . _ l  

k n  - 1 - Yen  - 1 COS O n 1¢ 

m ,  m ( 4 . 1 8 )  ~, 8 u ~ e 0 m a x  

Cu ~ ~outd'sign(2X3n-5--1) 

COS 0 n _  1 = I(Cu - -  C i n ) ( 2 X 3 n - 5 - -  1)1 + Cin 
__ /~sign(2x3n-5- 1) 

k n  -- 1 - -  "~ n -- 1 

(Cu - -  t i n )  2 k n - - 1  

jm0_l =2X I k n - 1 - - Y e n - 1  COS O n _ l l  

otherwise, 

In the first case, the limits on the cosine are 

( 2e'~'-p.~ 
c ~ ' = m a x  - 1 ,  2vk~ J 

( 2em'--P) 
C m = min 1, 2vk-----~. / '  

(4.15) 

while in the second case, these are interchanged. 
In the last case, we have a limit that  demarcates the choice 

between k + 1 and k . _  1, 

Cin = ~ J 1  -- p2/41/2 1 (4.16) 
/3 

and a pair for the outer  boundaries,  

2 m  ' 
+ rain 1, e ~ p . ' ~  

C°ut= 2vku J 

= m i n  (1,  2e'~'-p'~ 
Cout \ 

(4.17) 

To  generate the angle, one thus should set 

m // . 2e~" -- p'~ '~ 
c' = max ~' - "  --~vk~-;--) / 

2 mt m . [ .  e . - - p ' ~  [ 
Cu : m l n  / 1, ---X--77--~,, / ! 

\ 2vku ,1 1 k 
cosO._l=(CT-C'~)x3._5+c' ~ ( '  

kn-1 =k+-I I 
tC m - -  c m ]  k 2 I 

j m O  ', u 1 ] n -- 1 | 

n-1- 7-gsos E- J 

p ~> 2 ~ . _  1 or 

e~" ~> eommax 

w h e r e  Gin and + Cou t are given in Eqs. (4.16) and (4.17). (Once 
again, we have absorbed some of the factors from the 
measure into the jacobian.)  These expressions for the 
jacobian mO J , - 1  are unstable numerically if the denomina tor  
becomes small while k~_ 1 and ven _ 1 COS O n _ 1 are not. This 
happens in practice occasionally when comput ing in single 
precision, either when # , _  1 is small and v is near 1, or in the 
last of the three cases considered above. In the latter case, 
one may replace the second expression f o r  Jm°_ 1 in 
Eq. (4.18) with 

D . _  l = 2 v # . -  1 x /12x3.-5  - 11(% + c o s  0 ._1)  

Cin l(1-v2cos2 0°_1)) 
jmo_l=2  x \ x(k.-1;-Ven_lcosO._l) 

D,_I 12vpcosO,_l +sign(2x3,_5-1) 
x ~ u  ----c~ Dn_ t(1 + v 2 cos 2 0 ,_  , ) l J  

(4.19) 

while in the former case, it is best to pick some small e and 
an arbi t rary Vmin < 1, and for # , - 1  <e ,  v >  Vmin, replace 
both  Eqs. (4.10) and (4.18) with 

k n _  1 

mO 
J n _ l  = 

m !  m !  
e u e I 

m !  e u -- (e'~' -- e'~') x3. 5 

(e m' -- e'~') k. --1 

v(em'-(em'-e'(")x3. 5)" 

(4.20) 

(These expressions are exact in the limit that  8 --* 0.) 
The energy fraction and cosine of the last particle are 

en= 1 - - e n _  1 

v - k n _  1 c o s  O n _  l 
COS O n - -  

kn 

(4.21) 
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FIG.  1. The fractions of phase space surviving the cuts described in the 
text, as a function of the number of outgoing particles. The upper set of 
points corresponds to the first set of cuts (Exmin = 0.02 x//s), while the 
lower set corresponds to the second set (Exmi, = 0.05 q/~). 

Equations (3.50))(3.62), dealing with the azimuthal angle 
of the final pair, carry over to the present case without 
change. The final difference from the massless case comes in 
the formula for the weight, where Eq. (3.63) is replaced by 
a similar form, 

W rc(2zc)2-2. . 2 
2 J~°-~J~-I 1-[ ]P , [  JeiJ°~J~. ( 4 . 2 2 )  

i=1 

5. NUMERICAL EXAMPLES 

As an example, I consider the integration of the function 

A(po,p  + {p,}7:,)- 
s 2 

( a l ) ( 1 2 ) ( 2 3 ) . . . ( n -  ln ) (nb )  
(5.1) 

over n-particle phase space, where (0")=2pi.pj; s =  (ab); 
and Ptot = Pa + Pb = (X/s, 0). This function has the essential 
features of massless-particle amplitudes and soft and 
collinear singularities. Indeed, it is one of the terms in the 
non-vanishing Parke-Taylor helicity amplitude for multi- 
gluon scattering [7].  
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FIG.  2. The hit rates for the integral of Eq. (5.1). The hit rates for Rambo are plotted with the diamond symbol, those for Octopus with a cross: 

(a) Ermin = 0.02 x/~; (b) ETr~i. = 0.05 X/~. 
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FIG. 3. The ordinary efficiencies for the integral of Eq. (5.1). The efficiencies for Rambo are plotted with the diamond symbol, those for Octopus 
with a cross: (a) ETmin = 0.02 ~/';; (b) Ermi, = 0.05 ~f;. 
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FIG. 4. The practical efficiencies for the integral of Eq. (5.1). The efliciencies for Rambo are plotted with the diamond symbol, those for Octopus 

with a cross: (a) gTmin = 0.02 ~/~; (b) ETmin = 0.05 %/~. 
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I use two sample cuts: 

( a )  ETmin = 0.02 %/~, ARmi n = 0.8, ?]max ~--- 3.5. 

(b) gTmin = 0.05 N//-S, ARmi  n = 0.8, //max : 3.5. 

In each calculation, Vegas was used to feed each of the 
phase space generators, Rambo and Octopus. Vegas was 
given five iterations (with a minimum of 2000 accepted 
events each) to refine its bins and adapt (as best it could) to 
the integrand. The Vegas grid was then frozen, and the run 
continued with sets of 10 iterations, increasing the number 
of points per iteration for each new set. These sets yield 
an estimate of the asymptotic efficiency of each of the 
generators in the particular calculation. In practice, I have 
simply chosen the error estimates corresponding to the 
iterations with the largest number of points. (One also must 
ensure that one has reached a regime where the estimates of 
the integral do not fluctuate too wildly, else Vegas's error 
estimates will usually be much too small.) The fractions of 
phase space surviving the two cuts are shown in Fig. 1; the 
scaling of the hit rate with the number of final state particles 
n for the two cuts is shown in Fig. 2; the scaling of the 
ordinary efficiency is in Fig. 3; and the scaling of the practi- 
cal efficiency is in Fig. 4, for a calculation done on the 
Fermilab ACPMAPS system. (The fluctuations in Vegas's 
error estimate from independent iterations are the source of 
the estimated error in the efficiencies. These estimates are, 
however, rather noisy, and thus the error bars shown in 
Fig. 3 and 4 should be understood as qualitative estimates 
of the uncertainty.) 

trivially satisfied if CR < -  1, so we may assume that 
CR E [ - -  1, 1 ]. Rewrite 

cos 0ep = cos 0i cos 0p + sin 0,. sin 0p cos (~ / -  4p) 

= cos 0~ cos Op 

+ x/(1 - cos 20i)(1 - cos 20p) 

x cos(f f i -  4p) (1.2) 

so that the constraint becomes 

cos (~ / -  ~e)/> CR -- cos Oi cos 0p (I.3) 
4 ( 1  - -  COS 2 0i)(1 - -  COS 2 0p)"  

In order to allow a solution to this constraint, the right- 
hand side must be less than or equal to 1: 

CR-cosOiOI,<.,f(1-cos2Oi)(1-cos2Oe). (I.4) 

If we square both sides, we obtain 

(C R -- cos OiOp) 2 ~ (1 -- COS 2 0i)(1 -- COS 20p) 

which simplifies to 

or CR--CosOicOSOp<O (1.5) 

6. S U M M A R Y  

A Monte Carlo phase space generator is a necessary tool 
in calculation of cross sections for high-energy scattering 
experiments. It is desirable, and possible, to construct a 
generator which takes into account many of the experimen- 
tal cuts on detected particles. The equations presented in 
Sections 3 and 4 describe such a generator. Encoding them 
in a computer language yields a phase space generator of 
unsurpassed ugliness, but superior efficiency. 

where 

cosO~e[C-,C +] or cosO~cosOp>CR, (1.6) 

C + =CRcosOp+_x/(1-C~)(1-cos20I,). (I.7) 

(Note that C -+ e [ - 1 ,  1].) 
We must now distinguish two cases: (a)cos Opt>O; 

(b) cos O F < O. The constraint on cos O~ now becomes 

A P P E N D I X  I: CONSTRAINTS ON ANGLES 

We wish to translate a constraint on an angle relative to 
a fixed vector, 0;p, 

COS Oip ~ C R (I.1) 

into constraints on the polar and azimuthal angles 0i and ~i. 
The constraint cannot be satisfied if CR> 1, and it is 

CR 
{cosOi>/c~soeandcosOi~[C ,C+]} 

CR 
or cos 0 i ~ < - - ,  (cos Op < 0 )  

cos Ol, 

CR {c°s 
CR 

or cos 0 , - ~ > - - ,  (cos 0p~> 0). 
cos O r , 

(I.8) 

581/102/1-3 
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Let us consider the first case in more  detail. We can sub- inequalities are equal, the two branches  are also equal, then 
divide this into three sub-cases, we can write them more  simply as 

. cosoi [{_l, c  _coso,} 
> 1: cos 0i e [ -  1, 1 ] C - ,  otherwise ' 

cos 0p 

I , cosO--~[C- 'C+]:  c ° s O i ~ [ - l ' C + ]  (I.9) +, otherwise J ]  

CR 
- - < - - 1 :  c o s O i ~ E C - , C + ] .  
cos Op 

(1.12) 

while the constraint  on ~b; (given the above  constraints  on 
cos 0i) may  be writ ten 

( C -cosOicosO,,, ], 
The function x/x /1  - x 2 is monotonica l ly  increasing for I~bi- ~bp I ~< acos \ x / (  1 _ cos 2 0i)( 1 _ cos 2 0p) (I.13) 

/ 
x ~ ( - 1, 1 ); thus, 

where the range of acos is unders tood  to be [0, rt] and 
C~R < C  =~ CR where I adop t  the convent ion that  a c o s ( x > l ) = 0 ,  

cos 0 e x/1 - C~R acos(x < -- 1) = re. 

cos Op CR 

x/1 _ cos 20e  cos Op 

CR CR 
cos 0e > C +  =~x/1 - C~  

< - -1 ,  

(I.10) 

COS Op C R 
<.. ~ 1, 

~/1 --  cos  2 0 p  cos  Op > 

so the "missing" sub-cases in Eq. (1.9) are in fact forbidden. 
There is, of course, a similar sub-division in the case 
cos Op ~ 0. 

In summary ,  the constraints  on Oi are 

A P P E N D I X  II: TRANSVERSE 
ENERGY CONSTRAINTS 

We wish to discover what  constraints  on the energy 
are imposed  by the requirement  that  the intersection of 
Eq. (3.10) and Eq. (3.15) be nontrivial,  that  is, by the pair  of  
constraints  

N I l  ( eTmin~2>C - 
- \  e i /  

__~l__(eTmin~2<C+ 
\ e i /  

( IL l )  

rt cR } - 1 ,  - - >  - 1  
COS 0 i ~ COS Op , 

[_~C , otherwise 

cos 0-----~ >/1 , 

C +, otherwise 

It cR } - 1 ,  - - ~ <  - 1  
COS 0 i ~ COS 0p , 

1_ {. C , otherwise 

cos 0 e < 1 , 

C +, otherwise 

(COS Op < O) 

(cos 0p >1 0). 

(I.11) 

U p o n  shifting cos 0p to the other  side of inequalities and 
observing that, at  the points where the two sides in the 

In the case that  Lip ~ - 1, the constraints  are trivial, so we 
need consider only Lie e [ - 1, 1 ], which implies that  

v 2 -  1 
--vei < ei +------~ < ve i (11.2) 

or  

ei~ ~ , . (II.3) 

Of  course, we must  have eTmin < (1 + V)/2, else there is no 
range of allowed energies anyway.  

I restrict a t tent ion to the case cos 0 e < 0; the analysis for 
the other  case is similar. If  Lip/cos 0 l, > - 1, then the first 
constraint  in Eq . ( I I .1 )  is trivially satisfied; whereas  
Lie~cos 0p ~< - 1  implies that  Li~ ~> - c o s  O F, which in turn 
implies that  Lie < 0. Since in this case, c -  = L ~ ,  the first 
constraint  is again trivially satisfied. 
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The second constraint  in Eq. (11.1) is satisfied trivially 
if Lie /cOS0p>/1 ,  so consider the remaining case 
Lie /cos  0l, < 1, or  

1 - -  12 2 
ei > 2(1 - v cos 0l, )" (11.4) 

If L + > 0, the constra int  is again satisfied trivially. A non-  
trivial constraint  will arise if L + < 0, or  

2 e i -  1 + 15 2 
cos Op 2v 

+ sin Of, x / e  2 - ( ( 2 e ; -  1 + vE)/2v) 2 < O) (II.5) 

In t roduc ing  )2 = (2e i -  1)/v (note that  )2 e [ - 1, 1 ]),  this 
condi t ion becomes 

cOS Oll,()2 + v) + sin Ol, x / ( 1 - -  v2)(1-- )22) < O (II.6) 

or 

x >  - v  and cos 20l , ( )2+v)  2 

- sin 2 0p(1 - v2)(1 - )22) > 0 (II.7) 

which tells us that  

where the assumpt ion  e; > eTmin is implicit. Since bo th  sides 
of  the inequali ty are negative, it becomes 

()Ev + 1 )2  - -  4eZTmin 

> COS 2 0l,()2 + V) 2 + sin 2 0l,(1 -- rE)(1 -- )22) 

+2cOSOpsinOp()2+V)X/(1--vE)(1-- )22) .  (II.12) 

In principle, the inequali ty can be solved exactly, but  this 
involves the disgusting solutions to a quart ic  equation.  We 
may,  however,  observe that  

+ 2  cos 0l, sin 0l,()2 + v) x/(1  - v 2 ) ( 1  - ) 2  2) 

= - 2  Icos 0l,[ sin 0l,()2 + v) x/(1  - v2)(1 - )22) 

> - 2  [cos Of, [ sin Op()2+v) ~ - v  2) (II.13) 

and this gives a weaker  (but simpler)  constraint ,  

(Ev + 1 )2  - -  4eEmin 

> cos 2 0l,()2 + v) 2 + sin E 0l,(1 - rE)(1 -- )2 2) 

+ E c o s O p s i n O p ( ) 2 + v ) x / ( 1 - - v 2 ) .  (II.14) 

The inequali ty has the solution 

)2¢[~ ,~+], ~>o 
(II.15) 

)2~ [~+ ,  ~ _ ] ,  ~ < 0 ,  

where 

1 - - / 3  2 
e, > - - - - ~  and 2 ¢  [)2_,)2+ ], (II.8) 

where 

8_+ fl sin Ol,+X/40~e2Tmin+COS a 01,(1 - - v  2) ~2 
- - (11.16) 

) 2 + =  
cos 20l,v "~ (1 - v E) sin 0l, 

cos 2 Of,+ (1 - v  2) sin 20p 

1 --/12 

2(1 T- v sin OF)" 

With  e _+ = ()Ev + 1 )/2, we see that  

1 - -  19 2 
e+~> 

2 

1 __/)2 
e_  ~ < - - ,  

2 

so this case is more  simply ei >>- e +. 
The second constra int  of  Eq. ( I L l )  becomes 

-- X/()Ev + 1) 2 -- 4e~mi, 

< COS OF()2 + V) + sin 0l, x/(1 - rE)(1 - )22), 

(II.9) 

(II. lO) 

(II.11) 

and  where a and fl are given in Equa t ion  (3.18), 

c~ = sin 2 0l, - (1 - v 2) cos 2 0p 

fl = x/1 - v 2 cos 2 0p - v sin 0l,. 

If  we define 

y+  =~_+ [ eTmin=0  

= fl sin 0l, + cos 0l, x/1 - v 2 

v sin 0 e - x/1 - v 2 cos 0l, 

sin Op -~- N/f] - - / )2  cos Op 
(II.17) 

then the sign of the denomina to r  of  )3_ is the same as the 
sign of ~. 

If  a > 0, then the discr iminant  6 inside the square roo t  
in Equa t ion  (II.16) is positive, and  fur thermore,  8_ ~< 

~ < -  1, so )2 cannot  be less than  ~, and  the constra int  
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in Equation (I1.15) reduces to 2 > ~+. If ~ < 0 (which in 
practice happens less frequently), then if the discriminant is 
negative, the constraint cannot be solved, and we are left 
with the restriction that ei~<e+. If the discriminant is 
positive, we may note that g_ ~>.)3 ~> 1, so that the upper 
limit on 2 remains 1 (from the original kinematic limit), 
while the lower limit becomes 2 >/~ +. 

Putting all the constraints together, we obtain (6 > 0) 

e i >  eTmin and ei¢ [e+,  (vf+ + 1)/2]. (11.18) 

In practice, the region between eTmin and e+ does not exist, 
and it is sufficient to consider these additional constraints 
only in the case that eTmin >/e + and 6 > 0. 

APPENDIX III: TOTAL LONGITUDINAL 
MOMENTUM CONSTRAINTS 

In the massless case, we want 

max ~ IPjLI ~ IPL--PiLI" (III.1) 
j = i + l  

The left-hand side can be re-expressed as 

x /E}  - E2j  (III.2) 
j = i + l  

which is maximized when ETj = ETmin for all the remaining 
particles. Furthermore, 

2 2 2 2 
x /E j  - ETmin  + N / E  l - -  ETmin  

>I N / ( E j  + E l  - -  ETmin)2 __ E T m i  n 2  ( I I I . 3 )  

so the sum of absolute longitudinal momenta is maximized 
when the remaining energy is distributed equally amongst 
the momenta; this maximum is 

x / ( P  ° - El) 2 - (n - i) 2 E2min . (III.4) 

In the case where different particles have different minimum 
transverse energies, the sum is maximized when the energy 
of each particle is proportional to its minimum transverse 
energy: 

ETmin 1 

El oc ~ i  ETmin j  ", (111.5) 

The maximum in this case has the value 

o _ E i  2 _ ETmin j  . 
\ j = i +  1 

(111.6) 
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With 

S T ~ ( j = ~ i + l E T m i n j  ) ' 

we thus have the constraint 

]IPI cosOr,-  EecosOel 
~< ~/(pO _ E,)2 _ (pO)2 s~. 

The left-hand side has its minimum when 

COS 0 i = sign(cos Or,) 

x min(lcos Or, I ]PI/Ei, ~/1 - -  eTmin/e i 2  2),. 

(III.7) 

in order to allow a solution at all, the value there must be 
less than the right-hand side. If e~/> ~/eZmin +/)2 COS 2 0r,, 
the minimum of the left-hand side is zero, and there is no 
constraint; otherwise we must have 

Iv Icos 0 e l -  e i x / 1  2 2 - -  e T m i n / e i  I 

~<~/(1 -- ei)2 -- S~r ; (III.9) 

squaring both sides we obtain 

- 2 v  Icos 0el x/e 2 -  2 eTmin 

2 Or ' _ $2 r _ 2 e  i eTmin + 1 - - / )2  COS 2 (III.10) 

which means that 

ei<.co/2 or eie [ e_ ,  e+] ,  (III.11) 

where 

co 1 - - / ) 2  c o s  2 0 p  - -  s 2 -4- 2 = eTmin 

e2Tmin(l - -V  2 COS 2 0 p )  
Z =1  ~2 (III.12) 

(2) 

e_+ = 2 ( 1 _ v  2 cos 2 0r,) (1 + v  Icos 0el ~ ) .  

Combining the two, we obtain 

ei<~e+, Z > 0  
(II1.13) 

ei ~< ~o/2, Z < 0 

so long as either g < 0, e_ ~< co/2, or e_ < emin, which is 
always true in practice. 

(Ill.8) 
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Equation (111.7) then yields the following constraint on 
cos 0~; 

COS 0 i e ~) COS Op - -  N / ( ' I  - -  e i )  2 - -  S T ,  

e i  

vc°sOe+x/(1-ei)2-s2?]ei ' . (III.14) 

In the massive case, we replace the constraint (III.1) with 
the slightly weaker constraint 

max L IEj~I ~ IPL+Pa~I. (III.15) 
j = i + l  

The right-hand side of the inequality (III.7) is then 
unchanged. In the left-hand side, e/should be replaced by 

k~; but in the case that e i < x/e2min +/)2 COS 2 0 p ,  leaving the 
e/in place gives a weaker (but safe) constraint. 

APPENDIX IV: CONSTRAINTS ON THE 
ANGLES OF PENULTIMATE AND 

ULTIMATE MOMENTA 

We wish to simplify the set of inequalities 

atanh L _ ARmin/N/- ~ COS O n 1 < ?]i 

atanh cos 0~ 1 > r h +  Z1Rmin/N/2 

0 L -  1 - -  ~ i  )" A R m i n / N / / ~  

- ¢ / <  -  Rmi./,fi, 

( I V . l a )  

(IV.lb) 

(IV.lc) 

(IV.ld) 

where 

L 
COS O n 1 = COS O n _  1 COS Op 

+ sin 0~_ 1 sin Op sin ~n - 1 

L L sin O n _ ~ sin ' n  -- 1 "~- C O S  On- 1 sin Oe sin , e  

+s inO.  l cosCn-~cosO e 

- sin 0._ 1 sin ¢ ._  1 cos Op sin , p  

L- sin O. L_ 1 cos ¢n 1 = cos 0._ 1 sin Oe cos ¢e 

- sin O n_ 1 cos ' n  1 sin Oe 

- sin O n_ 1 sin ' n -  1 cos Op cos Ca. 

(IV.2) 

Recall that we are keeping track of two separate regions for 
~b,_ 1, one where cos ~b n_ 1 >~ 0, the other where the cosine is 
negative. Let us restrict attention for a while to the first 
region. Inequalities (IV.la), (IV.lb) are the easiest; taking 
the hyperbolic tangent of both sides and using the previous 
equation, we obtain 

1 
s in ,n  1 < .  

san 0p sin 0 ,_  1 

{ COS 0 i -  tmi n X / 
\ 1 - /min COS 0 i 

~- sln_ l,i 

1 
sin ' n -  1 > 

sin 0 e sin 0 ._  1 

cos Op cos On_l) 

COS 0 i + tmi n ) 
X 0p COS 0~_1 \1  + tmi n COS 0i  - c O S  

_ _  2 

= S n -  1,i~ 

where tmm=tanh(ARmm/v/2). With the range of 
understood to be [ -  re/2, ~c/2], and 

(IV.3) 

t 1,u S 1 
An-l,i  =asin n-l,i 

1,1 1,u 
is~n_ 1,il .~< 1. A n - l , i = r c - A n  1,i 

5Pn 1 = "true", 1,i 

~ / "  n 1 1, / = " t r u e "  

sln_l,i > 1" JV'~ /,/="false" 

1 . ,, 
1 ~ n  l i=  false , 

1 ,, ,, s~_l , /< 1 ( X n  1 i=  true 

2,1 " 2 
A n  - 1,i ~ a s l n  s n_ 1,i 

/ ~ 2 ,  u ~ 2 ,  l 
~ f - l n - - l , i ~ 7 ~ - - A n  1,i 

2 . ,, Is~_l,il ~ 1: )5~  n 1,/= t r u e ,  
2 ,, ,, I X  n 1 i=  true 

~ 2 - ,, 
2 ~'C~n 1,i = false , 

2 ,, ,, s, 1,/> 1: [.JV'n 1 /=  true 

2 ~ '2  -- "false", S n 1,i < - - 1 :  n - - l , i - -  

asin 

(IV.4) 

these first inequalities become (in the non-trivial case with 
a solution) 

q ~ n - ,  E ( [ -A lff '- 1,i, A~'- ~ 1,i] k..) [ A  2'1_ l , i ,  A2'-~ 1 , i ] ) m o d  27z. 

(IV.5) 

(It may be desirable to replace the asin function in this equa- 
tion with a computationally cheaper approximation; this 
will require a shifting of the bins in Section 3, to account for 
the maximal possible error.) 

The remaining two inequalities in Eq. (IV.l) we may 
replace, by the following trio, 

sin (~b.C_ 1 - (~b/+ A R m i n / ~ / 2 ) )  > 0 

sin(¢~_ 1 - ( ¢ / -  ARmin/%/~)) <: 0 (IV.6) 

COs(eL- -  1 - -  ¢ i )  < 0 ,  

where the allowed region will consist of those ' n -  1 which 
satisfy any one of the constraints. 





The inequalities of Eq. (IV.8) then have the solutions 

f FAJ" 1 AJ, u U ~--~-l.~,--n-~,~], cos~>0  
~n 1 ~ J5 3 

~U3 [~__  j,u j, 1 A n  ~,i, r c - A .  1,i]' COS ~ <0 .  

(IV.11) 

(This same form also allows us to include the inequalities 
(IV.la), (IV.lb).) 

The corresponding inequalities for sin ~b, will also yield 
constraints on ~b n_ 1, since ~b,_ ~ = r~ + ~b n. Define a set of s~,~ 
in a similar manner to the definitions of the sn_i, ~ in 
Eq. (IV.3) and (IV.9). There then are a variety of minus 
signs and exchanges between lower and upper bounds that 
make a difference, but otherwise, the definitions of the 

zl J, {1, u}. A J' {~'~} parallel those for -*n- 1,;. n, t 

sl. ~1 ~ 1: 

sln, i > 1: 

San, e<  - 1 :  

Is2il  ~ 1: 

s2,~ > 1: 

s ] ,~<  - 1 :  

{ A L l - - a s i n s  a n,i -- n,i 
1,u --  1,1 

An, i - ~ -  An, i 

g~rn, i ~  true , 

1 ,, ,, JV'n,~ = false 

~ 1  = "false," n, i 

{ A]:~ =asin s2,i 

A n2','i = re - A~: u 
5e~,. = "true," 

2 ,, ,, ~t~n,i= false, 
2 ,, ,, JVn,,.= false ; 

~/K1 = "true" n,i 

.Ar~, i = "true" 

X],  i = "true" 

.,i= true 

(IV.12) 

Is~.l ~<1: 

I 3,1 A.,e = ~ +asin [s3..] 

- asin [ c+~ ] 
kn+aJ 

3, u An, i - -asin[s3 i] 

- as in  [ c+~ ] 
Ln+~J 

J A3~'li=asin[s3.,i] 

I +asin [c+~]  
Ln+~J 

3, u A . ,  i - rc - asin[s3,i] 

+ asin [ c+~ ] 
Ln+~J 

~,i true, 
n, i = "true" 

t , s+~ cos 0e~>0 

t , s+~  cos  0 e < 0  
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3 
Sn, i > 1: 

Sn, i<  - - 1 :  

3 ,, ,, Sen.= false, 

~/~3 = "false"; n,i 

~P 3n, i = "true" 
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Is~,il 41:  

s4,i> 1: 

s4,~< -1 :  

s~ i[ ~ 1: 

s.5,i> 1: 

s~5,~< - 1 :  

A4]~ = - asin[s4"] t 

A4:~=rc+asin[s4i] ' 

- asin F c-~ ] 
L n -~ j  

A4:l i = ?z --  asin[s4,;] ' 

I +asin[ c 
L n -~ j  

A4,,~ ' = asin[s4,,] >' 

+asin [ c -a  1 
. . . .  L n - ' ~ J  

~ 4 ,  i =  true, 
Y 4 i  = "true" 

s_~ cos 0 e i> 0 

(IV.13) 

s_a cos 0 l, < 0 

X4,i = "false" 

5e4,. = "false," X4,; = "true"; 

=7t + asin[s. 5 i] 1 

+asin 

] ASnlu = - asin[inS'inS-~] l ' +  asin 

I A":li = asin[s~ i] 1 

- a s i n [  So ] [  
Ln+,~J ~ 

I A~:~ = n - -  asin[s~,,] [ '  -asi I ]) 
5e:,i= ','true:, 
JVsn, i = 'true 

6e5 = "false," n,i 

X.5,i = "false." 

Co cos 0 v >~ 0 

Co cos Oe < 0 

JV5 = "true" n, i 
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